

Center for Integrated Nanotechnologies (CINT)

"One scientific community focused on nanoscience integration"

Facilities

Jointly Operated by Los Alamos and Sandia National Laboratories

CINT is one of five DOE Nanoscale Science Research Centers providing open access to tools & expertise for nanoscience research

The CINT Core Facility will provide common ground for collaboration and integration

90,000 gross sq. ft.

Core Facility Features

- Low vibration for sensitive characterization
- Chemical/biological synthesis labs
- Clean room for device integration
- Interaction areas & conference rooms
- Visitor office space
- High-speed communications

SNL and LANL have key assets and national user facilities that will be made readily available through Gateway Facilities

CINT Gateway to Los Alamos will

focus on biosciences & nanomaterials

from a new facility

from the existing IMRL facility

CINT Gateway to Sandia will focus on

nanomaterials & microfabrication

31,000 gross sq. ft.

National User Facility Program

CINT invites user participation from all research sectors

- Universities
 - Postdocs, students and visiting faculty/ researchers will comprise a major part of the CINT program.
- Industry
 - Open and Propriety proposal mechanism.
- National and Federal Laboratories
 - Other DOE, Federal and DOE NSRC facilities.
- International Science Community
 - Open to the international science community

Key Aspects of User Program

- Open, no cost access to facilities based on scientific quality and CINT capabilities
- Spectrum of user modes
 - Access to equipment
- Collaborative research
- External evaluation of proposals
- Special help for first time users
- Mechanisms for proprietary work
- User program jump-start in FY03 Full operating program in FY06

Organizational Structure

Science Vision

CINT is devoted to establishing the scientific principles that govern the design, performance & integration of nanoscale materials

Theory & Experiment

Discovery

Synthesis & **Processing**

Performance

Integration

CINT's five scientific thrusts capitalize on the expertise and capabilities of Los Alamos & Sandia

Tunable electronic spectra in Q-dot solids

Organic/inorganic hybrid structures

Nano-Bio-Micro Interfaces: **Biological principles & functions imported** into artificial bio-mimetic systems

genetic engineering

modeling, & self-assembly

Complex Functional Nanomaterials: Relationships between synthesis, structure and complex and emergent properties

Self-Assembly to form

Underconstrained lattice – leading to **Negative Thermal**

Unique functionality is often due

to complex crystal structures

Nanometer Unit Cell-

ZrW₂O₈

Nanomechanics: Understanding the mechanical behavior of nanostructured materials

for High Interface/ Volume Ratio **Force Microscope**

Theory & Simulation: Theoretical, modeling and simulation techniques for multiple length and time scales and functionality

Quantum & Atomistic

Herb Goronkin

Molecular Monolayers

Stress Induced Nanostructure

for integrated solutions

Neal Shinn